NEW INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS PERTAINING GENERALIZED STRONGLY CONVEX MAPPINGS
نویسندگان
چکیده
منابع مشابه
On generalized some integral inequalities for local fractional integrals
In this study, we establish generaized Grüss type inequality and some generaized Cebysev type inequalities for local fractional integrals on frac-tal sets R (0 < 1) of real line numbers.
متن کاملOn Generalizations of Hadamard Inequalities for Fractional Integrals
Fej'{e}r Hadamard inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r Hadamard inequalities for $k$-fractional integrals. We deduce Fej'{e}r Hadamard-type inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.
متن کاملIntegral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملNew Inequalities Using Fractional Q-integrals Theory
The aim of the present paper is to establish some new fractional q-integral inequalities on the specific time scale: Tt0 = {t : t = t0q, n ∈ N} ∪ {0}, where t0 ∈ R, and 0 < q < 1.
متن کاملNew general integral inequalities for quasi-geometrically convex functions via fractional integrals
In this paper, the author introduces the concept of the quasi-geometrically convex functions, gives Hermite-Hadamard’s inequalities for GA-convex functions in fractional integral forms and defines a new identity for fractional integrals. By using this identity, the author obtains new estimates on generalization of Hadamard et al. type inequalities for quasi-geometrically convex functions via Ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Математички билтен/BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINE
سال: 2020
ISSN: 0351-336X,1857-9914
DOI: 10.37560/matbil2020091k